

Connecting globally ——

TELE-FONIKA KABLE SA (DMCC Branch).

is the Regional Middle East Sales Office of Tele-Fonika Kable S.A. from Poland, 4-th largest manufacturer of electric cables and wires in Europe who supplies its products to GCC states (UAE, Saudi Arabia, Kuwait, Qatar, Oman and Bahrain) and other countries in Middle and Far East Region.

TELE-FONIKA Kable SA (DMCC Branch) was established in June 2015 to support the sales and marketing activity of TF Kable as well as to ensure prompt and professional service to our customers, provided by our specialized and experienced team.

We are located in Dubai's central business location Jumeirah Lake Towers (JLT) on Dubai-Abu Dhabi highway at main Almas Tower (Cluster A), which is also an operating place of DMCC Free-zone & Licensing authority.

Our strengths

We are constantly developing our business in GCC States, rest of Middle East and India with specialized products dedicated for Oil&Gas, Mining, Marine Industry, Railways / underground Metros and Energy sector. We are also closely cooperating with authorized distributors who keep the stock of our fast moving items, such as Flexible HO7RN-F, Fire Resistant cables (Flame-X 950) or shipboard cables to react immediately for market needs.

Factory Approvals

Our Flame-X 950 fire resistant cables are designed for life saving, fire fighting and detection systems, so it is critically important these cables are designed and manufactured in internationally approved laboratories. You can trust TELE-FONIKA Kable, as our factory management system is approved to ISO9001 for Quality, ISO14001 for Environmental and OHSAS for Health & Safety.

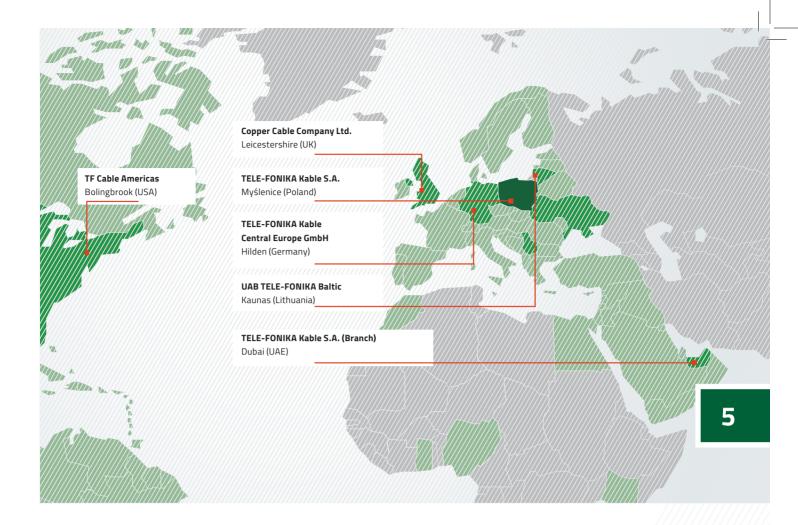
Certificates

For your safety and peace of mind, our Flame-X 950 fire resistant cables have been tested, verified and approved by the independent third party laboratories of BASEC and LPCB (UK) and also approved by Civil Defence Authorities of GCC countries.

Table of Contents

4	TELE-FONIKA Kable Group
6	FLAME-X 950 SERIES 1
11	FLAME-X 950 SERIES 2
16	FLAME-X 950 SERIES 2e
20	FLAME-X 950 SERIES 3
25	FLAME-X 950 SERIES 4
30	FLAME-X 950 SERIES 6

Experience and competence of the TELE-FONIKA Kable Group


The Group TELE-FONIKA Kable (TF Kable) is ranked in the forefront of the global cable industry.

The Group is the fourth manufacturer of cables and wires in Europe with significant development potential, based entirely on Polish capital.

TELE-FONIKA Kable Group's considerable investment in research and development centers and multi-skilled work teams, which have included eminent scientists working with our specialists, has been rewarded by the introduction of new-generation products and comprehensive services in the field of cable engineering. Products manufactured in our plants are sold in over 90 countries.

Our product assortment includes 25 thousand cable types.

The highest quality of our products is confirmed by over 460 certificates for groups of wares licensed by 34 renown centres of certifications worldwide. The company combines the good traditions of the cable industry in Poland and innovative technical solutions. TELE-FONIKA Kable Group consists of six plants — four in Poland, one in Ukraine, and one in Serbia. We own over a dozen trade agencies abroad, reaching customers in several dozen countries around the world.

Kraków-Wielicka plant – production of PVC or XLPE insulated 1 kV cables with copper or alluminium conductor, screened or armoured types, fire resistant and halogen free cables, overhead conductors as well as rubber insulated and/or rubber sheathed cables with voltage up to 30kV for heavy industry, signaling and control cables for special applications.

Kraków-Bieżanów plant – production of PCV or XLPE insulated copper wires and cables up to 1 kV, halogen free and fire resistant types and copper orsiver-coper overhead conductors for railway traction.

Bydgoszcz plant – the largest in Europe production center of medium, high and extra hight voltage cables with voltage up to 500 kV

Myślenice plant – production copper and fiber optic telecommunication cables, data telecommunication cables and automotive wires

Zajecar plant (Serbia) – production of low and medium voltage cables, signaling and control cables, telecommunication cables, as well as halogen-free cables and wires

Czernihov plant (Ukraine) – production of copper wires and cabes up to 1 kV, fire resistant and flame retardant cables as well as insulated overhead aluminum conductors.

Bukowno-Poland plant (recycling of cable waste)

with the recycling capacity of approx.
10 thousand tons of cable waste per year.
This allows for the recovery of fractions from individual materials with purity of over 99.5%

Fire Test Laboratory in the Krakow-Wielicka production plant — equipped with special apparatus that enables to provide flame propagation test on bundled cables, smoke density test as well as circuit integrity test with water or mechanical shock, test for corrosive gases emission.

Laboratory of High and Extreme Voltages in the production plant in Bydgoszcz

– equipped with 4 Faraday cages and research filed for qualification tests for cables and systems up to 500 kV

(FLAME-X 950 Single) **600/1000V**

Based on EN 50525-3-41, BS 6387

Single core non-sheathed fire resistant cable having low emission of smoke and corrosive gases when affected by fire

Conductors:	Circular or compacted circular, stranded, annealed copper conductor, class 2 acc. to BS EN 60228				
Primary insulation:	Fire resistant mica tape with a glass cloth				
Insulation:	Special thermosetting LSOH compound of EI5 type acc. to BS EN 50363-5				

CHARACTERISTICS

Core identification:	Green/yellow, blue, black, brown, grey, red, yellow. Other colours are available on special request.
Maximum conductor operating temperature:	+90°C
Lowest installation temperature:	-5°C
Maximum short-circuit conductor temperature:	+250°C
Minimum bending radius:	6 × D
	D – overall diameter of the cable

(Flame-X 950 Single) **600/1000V**

Fire performance

Fire resistance:	IEC 60331-21	Circuit integrity - tested 90 min. at 950°C					
	BS 6387 ¹⁾	Category \mathbf{C} – resistance to fire: 3 h at 950°C					
		Category W – resistance to fire with water: 15 min at 650°C plus 15 min with water spray					
		Category \boldsymbol{z} – resistance to fire with mechanical shock: 15 min at 950^{o}C					
Flame propagation:	agation: BS EN 60332-1-2						
Smoke density:	BS EN 61034-2						
Corrosive and acid BS EN 60754		HCI content < 0.5%					
gases emission:	BS EN 60754-2	pH ≥ 4.3 & conductivity ≤ 10 μSmm ⁻¹					
-							

¹⁾ Category C, W, Z for cables up to and including 95 mm2. Category C for cables above and including 120 mm².

Applications

For use in fixed installations, where cable is protected by conduit or trunking. Fire resistant cables intended to provide circuit integrity in case of fire.

Standard length cable packing:	100 m in coils or on spools, or 500 m on drums.
	Other forms of packing and delivery are available on request.

Approvals

LPCB	1,5 mm² to 500 mm² single-core

²⁾ BS EN 60754-1 & BS EN 60754-2 standards replace BS EN 50267-2-1

(Flame-X 950 Single) **600/1000V**

Nominal cross-sectional area of conductor	Radial thickness of insulation	Approximate overall diameter	Approximate net weight	Maximum resistance of conductor at temperature 20°C				
mm²	mm	mm	mm	Ω/km				
1.5	0.7	3.90	25.3	12.1				
2.5	0.8	4.60	38	7.41				
4	0.8	5.10	53	4.61				
6	0.8	5.40	5.40 71					
10	1.0	6.70	116	1.83				
16	1.0	7.80	173	1.15				
 25	1.2	9.60	270	0.727				
35	1.2	10.60	361	0.524				
50	1.4	12.30	490	0.387				
70	1.4	13.70	683	0.268				
 95	1.6	16.10	942	0.193				
120	1.6	17.50	1171	0.153				
150	1.8	19.50	1445	0.124				
185	2.0	21.40	1800	0.0991				
240	2.2	24.3	2338	0.0754				
300	2.4	26.50	2918	0.0601				
400	2.6	29.60	3766	0.0470				
500	2.8	33.20	4810	0.0366				

(Flame-X 950 Single) 600/1000V

Current Ratings and Voltage Drop

Nominal cross- sectional area of conductor	Short circuit current ratings (1 sec)	Current Rating* Two cables, single phase A.C. or D.C.	Current Rating* Three or four cables, three phase A.C.	Voltage Drop'' Two cables D.C.	Voltage Drop" Two cables, single phase A.C.	Voltage Drop ^{**} Three or four cables, three phase A.C.
mm²	Amps	Amps	Amps	mV/A/m	mV/A/m	mV/A/m
1.5	210	22	19	31	31	27
2.5	350	30	26	19	19	16
4	570	40	35	12	12	10
6	850	51	45	7.9	7.9	6.8
10	1400	71	63	4.7	4.7	4.0
16	2200	95	85	2.9	2.9	2.5
25	3600	126	111	1.85	1.90	1.65
35	5000	156	138	1.35	1.35	1.15
50	6800	189	168	0.99	1.05	0.90
70	9800	240	214	0.68	0.75	0.65
95	13600	290	259	0.49	0.58	0.50
120	17200	336	299	0.39	0.48	0.42
150	21100	375	328	0.32	0.43	0.37
185	26500	426	370	0.25	0.37	0.32
240	34900	500	433	0.190 0.33		0.29
300	43700	573	493	0.155 0.31		0.27
400	55900	683	584	0.120	0.29	0.25
500	70600	783	666	0.093	0.28	0.24

^{*} Installation reference method 3 (enclosed in conduit on a wall or in trunking etc.,) as per BS 7671, Appendix 4, Conductor operating temperature 90°C, Ambient temperature 30°C

^{**} Installation reference methods 3 and 4 (enclosed in conduit, etc., in or on a wall) as per BS 7671, Appendix 4, Conductor operating temperature 90°C, Ambient temperature 30°C

(Flame-X 950 Single) 600/1000V

Correction Factors for Ambient Temperature

Ambient Temperature, °C	25	30	35	40	45	50	55	60	65	70	75	80	85
Correction Factor	1.02	1.00	0.96	0.91	0.87	0.82	0.76	0.71	0.65	0.58	0.50	0.41	0.29

Correction Factors for Groups

Number of Circuits	2	3	4	5	6	7	8	9	10	12	14	16	18
Correction Factor	0.80	0.70	0.65	0.60	0.57	0.54	0.52	0.50	0.48	0.45	0.43	0.41	0.39

(Flame-X 950 Standard) **300/500V**

BS 7629-1, BS 6387, BS 5839-1

Fire resistant screened cables having low emission of smoke and corrosive gases when affected by fire

CONSTRUCTION

Conductors:	Plain annealed copper solid class 1 (for 1 - 2.5 mm²) and stranded class 2 (for 4 mm²) acc. to BS EN 60228
Uninsulated circuit protective conductor:	Tinned annealed copper of the same nominal cross-sectional area and of the same class as the insulated conductors
Drain wire:	Tinned annealed copper wires class 2 acc. to BS EN 60228 (for cables with 7, 12, 19 – cores)
Insulation:	Special cross-linked heat resistant compound type EI2 acc. to BS EN 50363-1
Optional binder:	Non hygroscopic halogen free tape
Screen:	Aluminium/polyester laminated tape and uninsulated circuit protective conductor or drain wire
Outer sheath:	Thermoplastic zero halogen low smoke compound type LTS 3 acc. to BS 7655-6.1
Colour of sheath:	Red or white (other colours are permissible when agreed with the manufacturer)
Core identification:	2 core + ECC: brown, blue
	3 core + ECC: brown, black, grey
	4 core + ECC: blue, brown, black, grey
	7, 12, 19 – core + Drain wire: numbering or for identification by colour: in each layer: brown (starting core), black (reference core)

CHARACTERISTICS

Maximum conductor operating temperature:	+70°C
Minimum operating temperature (for fixed application) after installation without movement:	-40°C
Lowest installation temperature:	0°C
Maximum short-circuit conductor temperature:	+250°C
Minimum bending radius:	6 × D; (D - overall cable diameter)

(Flame-X 950 Standard) 300/500V

Fire performance

Resistance to fire:	BS 6387 Category C – resistance to fire: 3 h at 950°C (IEC 60331)
	Category \boldsymbol{W} – resistance to fire with water: 15 min at 650^{o}C plus 15 min with water spray
	Category Z – resistance to fire with mechanical shock: 15 min at 950°C
	BS EN 50200 Class PH30 (resistance to fire. with mechanical shock and with water: 30 min)
	BS 5839-1:2002 Clause 26.2d PH 30 Standard fire resistant cable
Flame propagation:	BS EN 60332-1-2 (IEC 60332-1-2) and BS EN 50266-2-2 (IEC 60332-3-22)
Smoke density:	BS EN 61034-2 (IEC 61034-2)
Gases evolved during	BS EN 50267-2-1 (IEC 61034-2): < 0.5% acid gas
combustion:	BS EN 50267-2-2 (IEC 60754-2): pH ≥ 4.3; conductivity ≤ 10 μSmm ⁻¹

Applications

Installations emergency lighting and evacuation systems, fire and smoke detection systems, air-conditioning and alarm systems, automatic elevator doors, computer control rooms, offshore and marine emergency systems, emergency evacuation communicators.

Standard length cable packing:	500 or 1,000 m on drums.
	Other forms of packing and delivery are available on request.

Approvals

LPCB	1 mm ² to 4 mm ² 2-core, 3-core, 4-core

(Flame-X 950 Standard) **300/500V**

Number and cross- sectional area class of conductor		Nominal cross- sectional area of protective conductor ECC	Approximate overall diameter	Approximate net weight of cables	Maximum conductor resistance at temperature 20°C	Maximum ECC conductor resistance at 20°C	
n × mm²		mm²	mm	kg/km	Ω/km	Ω/km	
2 × 1 RE + ECC	1	1	6.9	65	18.1	18.2	
2 × 1.5 RE + ECC	1	1.5	7.8	86	12.1	12.2	
2 × 1.5 RM + ECC*	2	1.5	8.2	91	12.1	12.2	
2 × 2.5 RE + ECC	1	2.5	9.2	126	7.41	7.56	
2 × 2.5 RM + ECC*	2	2.5	9.7	134	7.41	7.56	
2 × 4 RM + ECC	2	4	10.9	187	4.61	4.70	
2 × 6 RM + ECC*	2	6	12.0	251	3.08	3.11	
3 × 1 RE + ECC**	1	1	7.3	81	18.1	18.2	
3 × 1.5 RE + ECC	1	1.5	8.3	108	12.1	12.2	
3 × 2.5 RE + ECC	1	2.5	9.7	160	7.41	7.56	
3 × 4 RM + ECC	2	4	11.6	239	4.61	4.70	
4 × 1 RE + ECC**	1	1	8.2	102	18.1	18.2	
4 × 1.5 RE + ECC	1	1.5	9.5	138	12.1	12.2	
4 × 1.5 RM + ECC*	1	1.5	10.2	147	12.1	12.2	
4 × 2.5 RE + ECC	1	2.5	11.5	205	7.41	7.56	
4 × 4 RM + ECC	2	4	14.6	310	4.61	4.70	

^{*} based on norm. without certificate ** wit

(Flame-X 950 Standard) 300/500V

Technical and Electrical Characteristics

Number and cross- sectional area of conductor	Conductor class	Nominal cross-sectional area of drain wire	Approximate overall diameter	Approximate net weight of cables	Maximum conductor resistance at 20°C	Maximum drain wire resistance at 20°C
n × mm²		mm²	mm	kg/km	Ω/km	Ω/km
7 × 1 RE**	1	0.5	10.4	150	18.1	36.7
7 × 1.5 RE	1	0.5	12.0	207	12.1	36.7
7 × 2.5 RE	1	0.5	13.9	300	7.41	36.7
12 × 1 RE**	1	0.5	13.6	247	18.1	36.7
12 × 1.5 RE	1	0.5	15.5	333	12.1	36.7
12 × 2.5 RE	1	0.5	18.3	496	7.41	36.7
19 × 1 RE*	1	0.5	15.7	356	18.1	36.7
19 × 1.5 RE	1	0.5	18.1	496	12.1	36.7
					_	

^{*} based on norm. without certificate ** without standards

Current ratings and voltage drop

Ambient air temperature: 30°C. Conductor operating temperature: 70°C. Installation as specified in Appendix 4 of BS 7671 IEE Wiring Regulations

(Flame-X 950 Standard) 300/500V

Reference Method 1

(clipped direct)

Reference Method 3

(enclosed in conduit on a wall or ceiling, or in trunking)

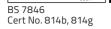
Nominal area of conductor	1 two core cable* single phase A.C. or D.C.		1 three-core or 1 four-core cable*. three-phase A.C.		Nominal area of conductor	1 two core cable* single phase A.C. or D.C.		1 three-core or 1 four-core cable*. three-phase A.C.	
	Current rating	Volts drop per ampere par metre	Current rating	Volts drop per ampere par metre		Current rating	Volts drop per ampere par metre	Current rating	Volts drop per ampere par metre
mm²	A	mV/m	A	mV/m	mm²	А	mV/m	А	mV/m
1.0	15	44	13.5	38	1.0	13	44	11.5	38
1.5	19.5	29	17.5	25	1.5	16.5	29	15	25
2.5	27	18	24	15	2.5	23	18	20	 15
4.0	36	11	32	9.5	4.0	30	11	27	9.5
6.0	46	7.3	41	6.4	6.0	38	7.3	34	6.4
0.0	40	/.5	41	0.4	0.0	38 	/.3 —	34 	— -

^{*} with protective conductor

Rating factors for ambient temperature

Ambient temperature, °C	25	30	35	40	45	50
Rating factor	1.03	1.00	0.94	0.87	0.79	0.71

All the information contained in this document - including tables and diagrams - is given in good faith and believed to be correct at the time of publication. The information does not constitute a warranty nor representation for which TELE-FONIKA Kable assumes legal responsibility. TELE-FONIKA Kable reserves rights to introduce changes to the document at any time.



16

FLAME-X 950 SERIES 2e

(Flame-X 950 Enhanced) 300/500V

BS 7629-1, BS 6387, BS 5839-1

"Enhanced" grade fire resistant electric cables having low emission of smoke and corrosive gases when affected by fire

CONSTRUCTION

Plain annealed copper solid class 1 (for 1 - 2.5 mm²) and stranded class 2 (for 4 mm²) acc. to BS EN 60228 and special request
Fire resistant mica tape with a glass cloth
Special cross-linked heat resistant compound type EI2 acc. to BS EN 50363-1
Helically applied aluminium / polyester tape and uninsulated circuit protective conductor
Tinned annealed copper conductor of the same nominal cross-sectional area and of the same class as the insulated conductors
Thermoplastic zero halogen low smoke compound type LTS 3 acc. to BS 7655-6.1
Red or white. Other colours are available on special request.
2 core + ECC: brown, blue 3 core + ECC: brown, black, grey 4 core + ECC: blue, brown, black, grey

CHARACTERISTICS

Maximum conductor operating temperature:	+70°C
Minimum operating temperature (for fixed application)	
after installation without movement:	-40°C
Lowest installation temperature:	0°C
Maximum short-circuit conductor temperature:	+250°C
Minimum bending radius:	6 × D; (D - overall cable diameter)

17

FLAME-X 950 SERIES 2e

(Flame-X 950 Enhanced) 300/500V

Fire performance

Resistance to fire: Com

Complies with the PH 120 ENHANCED fire resistant cable described in Clause 26.2 of BS 5839-1

BS 6387 Category **C** – resistance to fire: 3 h at 950°C (IEC 60331)

Category **W** – resistance to fire with water: 15 min at 650°C

plus 15 min with water spray

Category **Z** – resistance to fire with mechanical shock: 15 min at 950°C

EN 50200 - PH 120 BS 8434-2 - 120 min

Flame propagation:

BS EN 60332-1-2 (IEC 60332-1-2) and BS EN 50266-2-2 (IEC 60332-3-22)

Smoke density:

BS EN 61034-2 (IEC 61034-2)

Gases evolved during combustion:

BS EN 50267-2-1 (IEC 61034-2): < 0.5% acid gas BS EN 60754-22) pH \geq 4.3 & conductivity \leq 10 μ Smm⁻¹

Applications (Flame-X 950 2e)

For use in installations emergency lighting and evacuation systems, fire and smoke detection systems, air-conditioning and alarm systems, automatic elevator doors, computer control rooms, emergency evacuation communicators. Recommended for systems, in particular building types, in which cables might need to operate correctly during a fire for periods in excess of those normally required for single phase evacuation of a building. Cables can be used in buildings higher than 30 m, with four or more evacuation zones.

Standard length cable packing

500 or 1,000 m on drums.

Other forms of packing and delivery are available on request.

Approvals

LPCB 1 mr

1 mm 2 to 4 mm 2 2-core, 3-core, 4-core and 1 mm 2 to 2,5 mm 2 7-core 1,5 mm 2 to 2,5 mm 2 12-core and 1,5 mm 2 19-core

(Flame-X 950 Enhanced) 300/500V

Technical and Electrical Characteristics

Number and cross- sectional area of conductor	nal area class sec		Approximate overall diameter	Approximate net weight of cables	Maximum conductor resistance at 20°C	Maximum ECC conductor resistance at 20°C	
n × mm²		mm²	mm	kg/km	Ω/km	Ω/km	
2 × 1 RE + ECC	1	1	8.1	77	18.1	18.2	
2 × 1.5 RE + ECC	1	1.5	9.0	99	12.1	12.2	
2 × 1.5 RM + ECC*	2	1.5	9.4	104	12.1	12.2	
2 × 2.5 RE + ECC	1	2.5	10.4	142	7.41	7.56	
2 × 2.5 RM + ECC*	2	2.5	10.9	148	7.41	7.56	
2 × 4 RM + ECC	2	4	12.1	202	4.61	4.70	
3 × 1 RE + ECC**	1	1	8.6	96	18.1	18.2	
3 × 1.5 RE + ECC	1	1.5	9.6	126	12.1	12.2	
3 × 2.5 RE + ECC	1	2.5	11.0	180	7.41	7.56	
3 × 4 RM + ECC	2	4	12.9	258	4.61	4.70	
4 × 1 RE + ECC**	1	1	9.5	121	18.1	18.2	
4 × 1.5 RE + ECC	1	1.5	10.8	159	12.1	12.2	
4 × 2.5 RE + ECC	1	2.5	12.8	230	7.41	7.56	
4 × 2.5 RM + ECC*	2	2.5	13.7	242	7.41	7.56	
4 × 4 RM + ECC	2	4	15.9	333	4.61	4.70	

^{*} based on norm, without certificate ** without standards

Current ratings and voltage drop

Ambient air temperature: 30°C. Conductor operating temperature: 70°C. Installation as specified in Appendix 4 of BS 7671 IEE Wiring Regulations

(Flame-X 950 Enhanced) 300/500V

Reference Method 1

(clipped direct)

Reference Method 3

(enclosed in conduit on a wall or ceiling, or in trunking)

Nominal area of conductor	1 two core cable* single phase A.C. or D.C.		1 three-core or 1 four-core cable*. three-phase A.C.		Nominal area of conductor	1 two core cable* single phase A.C. or D.C.		1 three-core or 1 four-core cable*. three-phase A.C.	
	Current rating	Volts drop per ampere par metre	Current rating	Volts drop per ampere par metre		Current rating	Volts drop per ampere par metre	Current rating	Volts drop per ampere par metre
mm²	А	mV/m	A	mV/m	mm²	A	mV/m	A	mV/m
1.0	15	44	13.5	38	1.0	13	44	11.5	38
1.5	19.5	29	17.5	 25	1.5	16.5	29	15	25
2.5	27	18	24	 15	2.5	23	18	20	15
4.0	36	11	32	9.5	4.0	30	11	27	9.5

^{*} with protective conductor

Rating factors for ambient temperature

Ambient temperature, °C	25	30	35	40	45	50
Rating factor	1.03	1.00	0.94	0.87	0.79	0.71

Correction factors for groups

Number of cables in grouping	2	3	4	5	6	7	8	9	10
Rating factor	0.80	0.70	0.65	0.60	0.57	0.54	0.52	0.50	0.48

All the information contained in this document - including tables and diagrams - is given in good faith and believed to be correct at the time of publication. The information does not constitute a warranty nor representation for which TELE-FONIKA Kable assumes legal responsibility. TELE-FONIKA Kable reserves rights to introduce changes to the document at any time.

600/1000V

Based on BS 7846, BS 6387 _

Fire resistant security power cable having low emission of smoke and corrosive gases when affected by fire

20

CONSTRUCTION

Conductors:	Circular, circular compacted or shaped, stranded, annealed copper conductor, class 2 acc. to BS EN 60228
Primary insulation:	A suitable wrapping of mica tape with a glass cloth
Insulation:	Cable 1 to 16 mm ² - special thermosetting low smoke zero halogen compound type EI5 acc. to BS 50363-5 Cable 25 to 1,000 mm ² - cross-linked polyethylene (XLPE) of GP8 type acc. to BS 7655-1.3
Bedding:	Special low smoke zero halogen filling compound (only 2, 3, 4 cores)
Outer sheath:	Thermoplastic LSOH compound of LTS1 type acc. to BS 7655-6.1

CHARACTERISTICS

Nominal voltage:	0.6/1kV						
Colour of sheath:	Black. Other colours are available or	n special request.					
Core identification:	As per old IEEE regulations 1 core: black 2 core: red, black 3 core: red, yellow, blue 4 core: red, yellow, blue, black 5 core: red, yellow, blue, black, gn/yellow *We can offer both old or new IEEE	As per new IEEE regulations blue brown, blue brown, black, grey blue, brown, black, grey gn/yellow, blue, brown, black, grey					
Maximum conductor operating temperature: Lowest installation temperature:		regulation core colors					
Minimum operating temperature after installation without movement:	-40°C						

Maximum short-circuit conductor temperature:	+250°C
Minimum bending radius:	6 × D for cables with circular copper conductors and 8 × D for cables with shaped copper conductors; D – overall diameter of the cable

Fire performance

	Fire resistance:	BS 7846 p. 17.4.2	Category F2			
	(additional TF test)	IEC 60331-21	Circuit integrity - tested 90 min. at 950°C			
		BS 6387 ¹⁾	Category C – resistance to fire: 3 h at 950°C			
BS EN	60754-22) pH ≥ 4.3 & conductiv	ity ≤ 10 μSmm-1	Category W – resistance to fire with water: 15 min at 650°C plus 15 min with water spray			
			Category Z – resistance to fire with mechanical shock: 15 min at 950°C			
	Flame propagation:	BS EN 60332-1-2				
		BS EN 60332-3-24				
	Smoke density:	BS EN 61034-2				

¹⁾ Category C, W, Z for cables up to and including 500 $\mbox{mm}^2.$

Applications

Fire resistant cables for use in fixed installations in industrial areas, public buildings (as for example power plants, hospitals, shopping centres, theatres) and similar applications where maintenance of power supply during a fire is required for a defined period of time.

Corrosive and acid gases	BS EN 60754-1 ²)	HCI content < 0.5%
emission:	BS EN 60754-2 ²⁾	pH ≥ 4.3 & conductivity $\leq 10 \mu Smm^{-1}$

Approvals

Standard length cable packing	500 or 1,000 m on drums.
	Other forms of packing and delivery are available on request.

²⁾ BS EN 60754-1 & BS EN 60754-2 standards replace BS EN 50267-2-1

Number and CSA of conductor	and CSA of thickness thickness thickness overall net conductor of of bedding of outer diameter weig		of thickness thickness thickness overall r of of bedding of outer diameter		overall	weight	net conductor veight resistance		rating hase).C.*	Voltage Drop D.C.*	single-	Short circuit rating
			of cables	at 20°C	Clipped Free direct Air		-	phase A.C.*	(1 sec)			
n × mm²	mm	mm	mm	mm	kg/km	Ω/km	Amp	Amp	mV/A/m	mV/A/m	kA	
1 × 1 RM	0.7	-	1.4	6.4	53	18.1	19	-	46	46	0.14	
1 × 1.5 RM	0.7	-	1.4	6.7	61	12.1	25	-	31	31	0.21	
1 × 2.5 RM	0.7	-	1.4	7.2	74	7.41	34	-	19	19	0.35	
1 × 4 RM	0.7	-	1.4	7.7	93	4.61	46	-	12	12	0.57	
1 × 6 RM	0.7	-	1.4	8	113	3.08	59	-	7.9	7.9	0.85	
1 × 10 RM	0.7	-	1.5	9.1	162	1.83	81	-	4.7	4.7	1.4	
1 × 16 RM	0.7	-	1.5	10.2	225	1.15	109	-	2.9	2.9	2.2	
1 × 25 RM	0.9	-	1.6	12.2	325	0.727	143	135	1.85	1.85	3.5	
1 × 35 RM	0.9	-	1.7	13.4	426	0.524	176	169	1.35	1.35	5	
1 × 50 RM	0.9	-	1.8	15.1	563	0.387	228	207	0.99	1	7.1	
1 × 70 RM	1.1	-	1.9	16.9	777	0.268	298	268	0.68	0.71	10	
1 × 95 RM	1.1	-	2	19.1	1042	0.193	355	328	0.49	0.52	13.5	
1 × 120 RM	1.2	-	2.1	20.9	1294	0.153	413	383	0.39	0.43	17.1	
1 × 150 RM	1.4	-	2.2	23.1	1586	0.124	476	444	0.32	0.36	21.4	
1 × 185 RM	1.6	-	2.4	25.4	1971	0.099	545	510	0.25	0.3	26.4	
1 × 240 RM	1.7	-	2.6	28.3	2527	0.075	644	607	0.19	0.25	34.3	
1 × 300 RM	1.8	-	2.6	30.5	3120	0.060	743	703	0.155	0.22	42.9	
1 × 400 RM	2		2.8	34	4013	0.047	868	823	0.12	0.2	57.2	
1 × 500 RM	2.2	-	3	38	5109	0.037	990	946	0.093	0.185	71.5	
1 × 630 RM	2.4	-	3.2	43	6477	0.028	1130	1088	0.072	0.175	90.1	
1 × 800 RM	2.6		3.4		8163	0.022	1288	1214	0.056	0.17	114.4	
1 × 1000 RM	2.8	-	3.6		10100	0.018	1443	1349	0.045	0.165	134	
		_									_	

Number and CSA of conductor	Nominal thickness of	Nominal thickness of bedding		Approx. overall diameter	Approx. net weight	Maximum conductor resistance	single-p	U		hase Drop D.C.*		Voltage Drop single-	Short circuit rating
	insulation		sheath		of cables	at 20°C	Clipped Free direct Air		-	phase A.C.*	(1 sec)		
n × mm²	mm	mm	mm	mm	kg/km	Ω/km	Amp	Amp	mV/A/m	mV/A/m	kA		
2 × 1 RM	0.7	0.8	1.4	11.7	185	18.1	19	21	46	46	0.14		
2 × 1.5 RM	0.7	0.8	1.4	12.2	208	12.1	24	26	31	31	0.21		
2 × 2.5 RM	0.7	0.8	1.4	13.1	249	7.41	33	36	19	19	0.35		
2 × 4 RM	0.7	0.8	1.4	14.1	304	4.61	45	49	12	12	0.57		
2 × 6 RM	0.7	0.8	1.4	14.9	361	3.08	58	63	7-Sep	7.9	0.85		
2 × 10 RM	0.7	0.8	1.5	16.9	497	1.83	80	86	4.7	4.7	1.4		
2 × 16 RM	0.7	0.8	1.5	18.9	670	1.15	107	115	2.9	2.9	2.2		
3 × 1 RM	0.7	0.8	1.4	12.2	203	18.1	17	18	-	40	0.14		
3 × 1.5 RM	0.7	0.8	1.4	12.8	231	12.1	22	23	-	27	0.21		
3 × 2.5 RM	0.7	0.8	1.4	13.8	281	7.41	30	32	-	16	0.35		
3 × 4 RM	0.7	0.8	1.4	14.9	350	4.61	40	42	-	10	0.57		
3 × 6 RM	0.7	0.8	1.4	15.7	423	3.08	52	54	-	6.8	0.85		
3 × 10 RM	0.7	0.8	1.5	17.8	593	1.83	71	75	-	4	1.4		
3 × 16 RM	0.7	0.8	1.6	20.2	826	1.15	96	100	-	2.5	2.2		

Technical and Electrical Characteristics

Number and CSA of conductor	Nominal thickness of	Nominal thickness of bedding		Approx. overall diameter	Approx. net weight	Maximum conductor resistance	single-p	J		phase Drop D.C.*		Voltage Drop single-	Short circuit rating
	insulation		sheath		of cables	at 20°C	Clipped direct	Free Air	•	phase A.C.*	(1 sec)		
n × mm²	mm	mm	mm	mm	kg/km	Ω/km	Amp	Amp	mV/A/m	mV/A/m	kA		
4 × 1 RM	0.7	0.8	1.4	13.2	233	18.1	17	18	-	40	0.14		
4 × 1.5 RM	0.7	0.8	1.4	13.9	268	12.1	22	23	-	27	0.21		
4 × 2.5 RM	0.7	0.8	1.4	14.9	328	7.41	30	32	-	16	0.35		
4 × 4 RM	0.7	0.8	1.4	16.2	414	4.61	40	42	-	10	0.57		
4 × 6 RM	0.7	0.8	1.5	17.2	513	3.08	52	54	-	6.8	0.85		
4 × 10 RM	0.7	0.8	1.5	19.4	718	1.83	71	76	-	4	1.4		
4 × 16 RM	0.7	0.8	1.6	22.1	1010	1.15	96	100	-	2.5	2.2		

^{*} current ratings acc. to BS 7671 table 4E1A, 4E1B, 4E2A, 4E2B

Rating factors for air temperature

LPCB	1 mm	n² to 1,00	0 mm² 1-0	ore and 1	mm² to 10	5 mm² 2-c	ore, 3-coi	re, 4-core	
Ambient air temperature, °C		25	30	35	40	45	50	55	60
Rating factors		1.02	1.0	0.96	0.91	0.87	0.82	0.76	0.71

All the information contained in this document - including tables and diagrams - is given in good faith and believed to be correct at the time of publication. The information does not constitute a warranty nor representation for which TELE-FONIKA Kable assumes legal responsibility. TELE-FONIKA Kable reserves rights to introduce changes to the document at any time.

25

600/1000V

BS 7846 - F2 **-**

Armoured fire resistant electric power and control cable having low emission of smoke and corrosive gases when affected by fire

CONSTRUCTION

Conductors:	Circular, circular compacted or shaped, stranded, annealed copper conductor, class 2 acc. to BS EN 60228
Primary insulation:	A suitable wrapping of mica tape with a glass cloth
Insulation:	Cross-linked polyethylene (XLPE) of GP8 type acc. to BS 7655-1.3
Bedding:	Special low smoke zero halogen (LSOH) compound
Armour:	Single layer of galvanized steel wires applied helically over the bedding
Outer sheath:	Thermoplastic halogen free compound (LSOH) of LTS1 type acc. to BS 7655-6.1

CHARACTERISTICS

	_				
Colour of sheath:	Black. Other colours are available on special request.				
Core identification:	As per old IEEE regulations	As per new IEEE regulations			
	1 core: black	blue			
	2 core: red, black	brown, blue			
	3 core: red, yellow, blue	brown, black, grey			
	4 core: red, yellow, blue, black	blue, brown, black, grey			
	5 core: red, yellow, blue, black,	gn/yellow, blue, brown, black,			
	gn/yellow	grey			
	*We can offer both old or new IEEE regulation core colors				
Maximum conductor operating temperature:	+90°C				
Lowest installation temperature:					
Minimum operating temperature after installation					
without movement:	-40°C +250°C Category F2 acc. to BS 7846, BS 6387 – Category C, W, Z BS EN 60332-1-2, EN 60332-3-24				
Maximum short-circuit conductor temperature:					
Fire resistance:					
Flame propagation:					
Low smoke emission:	BS EN 61034-2				

Low corrosive and acid gas emission:	BS EN 60754-1, HCl content < 0.5% BS EN 60754-22) pH ≥ 4.3 & conductivity ≤ 10 µSmm-1
Minimum bending radius:	6 × D for cables with circular copper conductors and 8 × D for cables with shaped copper conductors; D – overall diameter of the cable

Applications

Fire resistant armoured cables for use in fixed installations in industrial areas, public buildings (as for example power plants, hospitals, shopping centres, theatres) and similar applications where maintenance of power supply during a fire is required for a defined period of time.

Standard length cable packing:

500 or 1,000 m on drums.

Other forms of packing and delivery are available on request.

Approvals

BASEC	25 mm ² to 400 mm ² 2-core, 3-core, 4-core and 1,5 mm ² to 16 mm ² 2-core, 3-core, 4-core
LPCB	1,5 mm ² to 400 mm ² 2-core, 3-core, 4-core and 1,5 mm ² to 16 mm ² 2-core, 3-core, 4-core

	thickness	Nominal thickness	Nominal diameter	Approx.	Approx. net	Maximum conductor	Current rating single- phase A.C. or D.C. *		Voltage Drop D.C.*	Voltage Drop single- phase A.C.*
		of armour wires	diameter	weight of cables	resistance at 20°C	Clipped direct	Free Air			
n × mm²	mm	mm	mm	mm	kg/km	Ω/km	Amp	Amp	mV/A/m	mV/A/m
2 × 1.5	0.6	1.3	0.9	12.8	346	12.1	27	29	31.0	31.0
2 × 2.5	0.7	1.4	0.9	14.3	420	7.41	36	39	19.0	19.0
2 × 4	0.7	1.4	0.9	15.3	491	4.61	49	52	12.0	12.0
2 × 6	0.7	1.4	0.9	16.1	554	3.08	62	66	7.9	7.9
2 × 10	0.7	1.5	0.9	18.1	712	1.83	85	90	4.7	4.7
2 × 16	0.7	1.5	1.25	20.8	1032	1.15	110	 115	2.9	2.9
2 × 25	0.9	1.6	1.25	24.8	1421	0.727	146	152	1.85	1.90
2 × 25	0.9	1.6	1.25	20.8	1097	0.727	146	152	1.85	1.90
2 × 35	0.9	1.7	1.6	28.2	1944	0.524	180	188	1.35	1.35
2 × 35	0.9	1.7	1.6	23.5	1494	0.524	180	188	1.35	1.35
2 × 50	1.0	1.8	1.6	25.7	1830	0.387	219	228	0.98	1.00
2 × 70	1.1	1.9	1.6	28.7	2370	0.268	279	291	0.67	0.69
2 × 95	1.1	2.0	2.0	32.6	3239	0.193	338	354	0.49	0.52
2 × 120	1.2	2.1	2.0	35.1	3823	0.153	392	410	0.39	0.42
2 × 150	1.4	2.2	2.0	38.1	4534	0.124	451	472	0.31	0.35
2 × 185	1.6	2.4	2.5	42.9	5856	0.0991	515	539	0.25	0.29
2 × 240	1.7	2.5	2.5	46.7	7155	0.0754	607	636	0.195	0.24
2 × 300	1.8	2.6	2.5	50.7	8555	0.0601	698	732	0.155	0.21

Number and CSA of	Nominal thickness	Nominal thickness	Nominal diameter	Approx. overall	Approx.	Maximum conductor	Short circuit	Current rat		Voltage Drop three
conductor of insulation	of outer sheath	of armour wires	diameter	weight of cables	resistance at 20°C	current rating	Clipped direct	Free Air	– phase A.C.*	
n × mm²	mm	mm	mm	mm	kg/km	Ω/km	Amp	Amp	Amp	mV/A/m
3 × 1.5	0.6	1.3	0.9	13.4	377	12.1	210	23	25	27.0
3 × 2.5	0.7	1.4	0.9	15	465	7.41	350	31	33	16.0
3 × 4	0.7	1.4	0.9	16.1	544	4.61	570	42	44	10.0
3 × 6	0.7	1.4	0.9	16.9	628	3.08	850	53	56	6.8
3 × 10	0.7	1.5	1.25	19.7	944	1.83	1400	73	78	4.0
3 × 16	0.7	1.6	1.25	22.1	1215	1.15	2200	94	99	2.5
3 × 25	0.9	1.7	1.6	27.5	1887	0.727	3575	124	131	1.65
3 × 25	0.9	1.7	1.6	25	1637	0.727	3575	124	131	1.65
3 × 35	0.9	1.8	1.6	30	2314	0.524	5005	154	162	1.15
3 × 35	0.9	1.8	1.6	27.4	2025	0.524	5005	154	162	1.15
3 × 50	1.0	1.8	1.6	29.8	2472	0.387	7150	187	197	0.87
3 × 70	1.1	1.9	1.6	33.5	3237	0.268	10010	238	251	0.60
3 × 95	1.1	2.1	2.0	38	4434	0.193	13585	289	304	0.45
3 × 120	1.2	2.2	2.0	41.1	5287	0.153	17160	335	353	0.37
3 × 150	1.4	2.3	2.5	46.5	6768	0.124	21450	386	406	0.30
3 × 185	1.6	2.4	2.5	50.4	8094	0.0991	26455	441	463	0.26
3 × 240	1.7	2.6	2.5	55.4	10053	0.0754	34320	520	546	0.21
3 × 300	1.8	2.7	2.5	60.2	11949	0.0601	42900	599	628	0.185
3 × 400	2.0	2.9	2.5	66.8	14895	0.0470	57200	673	728	0.165

Technical and Electrical Characteristics

and CSA of thickness to conductor of insulation	Nominal thickness	Nominal diameter	Approx. Overall	Approx. Net	Maximum conductor resistance at 20°C	Short circuit current rating	Current rating three phase A.C.*		Voltage Drop Three	
	of outer sheath	of armour wires		weight of cables			Clipped direct	Free Air	─ phase A.C.*	
n × mm²	mm	mm	mm	mm	kg/km	Ω/km	Amp	Amp	Amp	mV/A/m
4 × 1.5	0.6	1.3	0.9	14.4	422	12.1	210	23	25	27.0
4 × 2.5	0.7	1.4	0.9	16.1	522	7.41	350	31	33	16.0
4 × 4	0.7	1.4	0.9	17.4	628	4.61	570	42	44	10.0
4 × 6	0.7	1.5	1.25	19.1	848	3.08	850	53	56	6.8
4 × 10	0.7	1.5	1.25	21.3	1091	1.83	1400	73		4.0
4 × 16	0.7	1.6	1.25	24	1440	1.15	2200	94	99	2.5
4 × 25	0.9	1.7	1.6	29.9	2240	0.727	3575	124	131	1.65
4 × 25	0.9	1.7	1.6	27.7	2028	0.727	3575	124	131	1.65
4 × 35	0.9	1.8	1.6	32.6	2769	0.524	5005	154	 162	1.15
4 × 35	0.9	1.8	1.6	30.3	2491	0.524	5005	154	162	1.15
4 × 50	1.0	1.9	1.6	33.3	3111	0.387	7150	187	 197	0.87
4 × 70	1.1	2.1	2.0	38.9	4418	0.268	10010	238	 251	0.60
4 × 95	1.1	2.2	2.0	42.6	5607	0.193	13585	289	304	0.45
4 × 120	1.2	2.3	2.5	47.9	7216	0.153	17160	335	353	0.37
4 × 150	1.4	2.4	2.5	51.9	8559	0.124	21450	386	406	0.30
4 × 185	1.6	2.6	2.5	56.6	10275	0.0991	26455	441	463	0.26
4 × 240	1.7	2.7	2.5	62.4	12855	0.0754	34320	520	546	0.21
4 × 300	1.8	2.9	2.5	67.4	15307	0.0601	42900	 599	628	0.185
4 × 400	2.0	3.2	3.15	77.0	19826	0.0470	57200	673	728	0.165
					_	_		_	_	_

* acc to BS 7671 table 4E4A & 4E4B

30

FLAME-X 950 SERIES 6 600/1000V

BS 7846 - F120 **-**

Armoured fire resistant electric power and control cable having low emission of smoke and corrosive gases when affected by fire

CONSTRUCTION

Conductors:	Circular, circular compacted or shaped stranded, annealed copper conductor, class 2 acc. to BS EN 60228
Primary insulation:	Fire resistant mica tape with a glass cloth
Insulation:	Cross-linked polyethylene (XLPE) of GP8 type acc. to BS 7655-1.3
Cable core:	Insulated conductors twisted together wrapped by fire resistance tape (optional also by polyester film)
Bedding:	Thermoplastic zero halogen low smoke compound (LSOH) wrapped by fire resistance tape
Armour:	Galvanized steel wires applied helically (optional polyester film over the armour)
Outer sheath:	Thermoplastic zero halogen low smoke compound of LTS1 type acc. to BS 7655-6.1

CHARACTERISTICS

Colour of sheath:	Black. Other colours are available on special request.			
Core identification:	As per old IEEE regulations	As per new IEEE regulations		
	1 core: black	blue		
	2 core: red, black	brown, blue		
	3 core: red, yellow, blue	brown, black, grey		
	4 core: red, yellow, blue, black	blue, brown, black, grey		
	5 core: red, yellow, blue, black,	gn/yellow, blue, brown,		
	gn/yellow	black, grey		
	*We can offer both old or new IEEE regulation core colors			
Maximum conductor operating temperature	+90°C			
Lowest installation temperature:	0°C			
Minimum operating temperature after				
installation without movement:	-40°C			

Maximum short-circuit conductor temperature:	+250°C
Minimum bending radius:	6 × D for cables with circular copper conductors
	8 × D for cables with shaped copper conductors
	D – overall diameter

Fire performance

Fire resistance:	BS 8491	Category F120			
	BS 8519	Category 1, 2 and 3			
Flame propagation:	BS EN 60332-1-2				
	BS EN 60332-3-24				
Smoke density:	BS EN 61034-2				
Corrosive and acid gases	BS EN 60754-1 ¹⁾ HCI	content < 0.5%			
emission:	BS EN 60754-2 ¹⁾ pH \geq 4.3 & conductivity \leq 10 μ Smm ⁻¹				

¹⁾ BS EN 60754-1 & BS EN 60754-2 standards replace BS EN 50267-2-1

Applications

Enhanced fire resistant armoured cables for use in life safety and fire fighting systems of public buildings (hospitals, shopping centres, theatres, stadiums) and similar applications where maintenance of power supply during a fire is critical.

Standard length cable packing:	500 or 1,000 m on drums.
	Other forms of packing and delivery are available on request.

Approvals

BASEC	4 mm² to 16 mm² 3-core, 4-core and 25 mm² to 400 mm² 2-core, 3-core, 4-core;
LPCB	4 mm ² to 16 mm ² 3-core, 4-core and 25 mm ² to 400 mm ² 3-core, 4-core

Number and CSA of conductor	Nominal thickness of insulation	Nominal thickness of outer sheath	Nominal diameter of armour wires	Approx. overall diameter	Approx. net weight of cables	Maximum conductor resistance at 20°C	Current rating single-phase A.C. or D.C. *		Voltage Drop D.C.*	Voltage Drop single-phase A.C.*
							Clipped direct	Free Air	_	
n × mm²	mm	mm	mm	mm	kg/km	Ω/km	Amp	Amp	mV/A/m	mV/A/m
2 × 4 RM	0.7	1.4	1.25	20.1	712	4.61	49	52	12.0	12.0
2 × 6 RM	0.7	1.4	1.25	20.1	744	3.08	62	66	7.9	7.9
2 × 10 RM	0.7	1.5	1.25	20.9	839	1.83	85 85	90	4.7	4.7
2 × 16 RM	0.7	1.5	1.25	22.9	1027	1.15	110	115	2.9	2.9
2 × 25 RM	0.9	1.6	1.25	26.4	1425	0.727	146	152	1.85	1.90
2 × 35 RM	0.9	1.7	1.6	29.8	1929	0.524	180	188	1.35	1.35
2 × 50 SM	1.0	1.8	1.6	27.1	1963	0.387	219	228	0.98	1.00
2 × 70 SM	1.1	1.9	1.6	31.0	2552	0.268	279	291	0.67	0.69
2 × 95 SM	1.1	2.0	2.0	34.0	3392	0.193	338	354	0.49	0.52
2 × 120 SM	1.2	2.1	2.0	36.5	4014	0.153	392	410	0.39	0.42
2 × 150 SM	1.4	2.2	2.0	39.5	4717	0.124	451	472	0.31	0.35
2 × 185 SM	1.6	2.4	2.5	44.3	6069	0.0991	515	539	0.25	0.29
2 × 240 SM	1.7	2.5	2.5	48.1	7390	0.0754	607	636	0.195	0.24
2 × 300 SM	1.8	2.6	2.5	52.1	8772	0.0601	698	732	0.155	0.21
2 × 400 SM	2.0	2.8	2.5	59.6	11120	0.047	787	847	0.120	0.19
							_		_	

Nominal thickness of insulation	Nominal thickness of outer sheath	Nominal diameter of armour wires	Approx. overall diameter	Approx. net weight of cables	Maximum conductor resistance at 20°C	Short circuit current rating	Current rating three phase A.C.*		Voltage Drop three phase A.C.*
							Clipped direct	Free Air	_
mm	mm	mm	mm	kg/km	Ω/km	Amp	Amp	Amp	mV/A/m
0.7	1.4	1.25	20.2	832	4.61	570	42	44	10.0
0.7	1.4	1.25	20.1	803	3.08	850	53	56	6.8
0.7	1.5	1.25	21.8	985	1.83	1400	73	78	4.0
0.7	1.6	1.25	24.2	1241	1.15	2200	94	99	2.5
0.9	1.7	1.6	29.1	1930	0.727	3575	124	131	1.65
0.9	1.8	1.6	31.6	2328	0.524	5005	154	162	1.15
1.0	1.8	1.6	31.2	2629	0.387	7150	187	197	0.87
1.1	1.9	1.6	34.9	3394	0.268	10010	238	251	0.60
1.1	2.1	2.0	39.4	4617	0.193	13585	289	304	0.45
1.2	2.2	2.0	42.5	5486	0.153	17160	335	353	0.37
1.4	2.3	2.5	47.9	7003	0.124	21450	386	406	0.30
1.6	2.4	2.5	51.8	8352	0.0991	26455	441	463	0.26
1.7	2.6	2.5	56.8	10299	0.0754	34320	520	546	0.21
1.8	2.7	2.5	61.6	12262	0.0601	42900	599	628	0.185
2.0	2.9	2.5	68.9	15520	0.0470	57200	673	728	0.165
	mm 0.7 0.7 0.7 0.9 1.0 1.1 1.1 1.2 1.4 1.6 1.7 1.8	mm mm 0.7 1.4 0.7 1.4 0.7 1.5 0.7 1.6 0.9 1.7 0.9 1.8 1.0 1.8 1.1 1.9 1.1 2.1 1.2 2.2 1.4 2.3 1.6 2.4 1.7 2.6 1.8 2.7	mm mm mm 0.7 1.4 1.25 0.7 1.4 1.25 0.7 1.5 1.25 0.7 1.6 1.25 0.9 1.7 1.6 0.9 1.8 1.6 1.0 1.8 1.6 1.1 1.9 1.6 1.1 2.1 2.0 1.2 2.2 2.0 1.4 2.3 2.5 1.6 2.4 2.5 1.7 2.6 2.5 1.8 2.7 2.5	mm mm mm mm 0.7 1.4 1.25 20.2 0.7 1.4 1.25 20.1 0.7 1.4 1.25 20.1 0.7 1.5 1.25 21.8 0.7 1.6 1.25 24.2 0.9 1.7 1.6 29.1 0.9 1.8 1.6 31.6 1.0 1.8 1.6 31.2 1.1 1.9 1.6 34.9 1.1 2.1 2.0 39.4 1.2 2.2 2.0 42.5 1.4 2.3 2.5 47.9 1.6 2.4 2.5 51.8 1.7 2.6 2.5 56.8 1.8 2.7 2.5 61.6	mm mm mm mm kg/km 0.7 1.4 1.25 20.2 832 0.7 1.4 1.25 20.1 803 0.7 1.5 1.25 21.8 985 0.7 1.6 1.25 24.2 1241 0.9 1.7 1.6 29.1 1930 0.9 1.8 1.6 31.6 2328 1.0 1.8 1.6 31.2 2629 1.1 1.9 1.6 34.9 3394 1.1 2.1 2.0 39.4 4617 1.2 2.2 2.0 42.5 5486 1.4 2.3 2.5 47.9 7003 1.6 2.4 2.5 51.8 8352 1.7 2.6 2.5 56.8 10299 1.8 2.7 2.5 61.6 12262	mm mm mm mm kg/km Ω/km 0.7 1.4 1.25 20.2 832 4.61 0.7 1.4 1.25 20.1 803 3.08 0.7 1.5 1.25 21.8 985 1.83 0.7 1.6 1.25 24.2 1241 1.15 0.9 1.7 1.6 29.1 1930 0.727 0.9 1.8 1.6 31.6 2328 0.524 1.0 1.8 1.6 31.2 2629 0.387 1.1 1.9 1.6 34.9 3394 0.268 1.1 2.1 2.0 39.4 4617 0.193 1.2 2.2 2.0 42.5 5486 0.153 1.4 2.3 2.5 47.9 7003 0.124 1.6 2.4 2.5 51.8 8352 0.0991 1.7 2.6 2.5 56.8 10299 </td <td>thickness of insulation of insulation of linear of insulation of outer sheath diameter of armour wires overall diameter of cables weight of cables conductor resistance at 20°C circuit current rating mm mm mm kg/km Ω/km Amp 0.7 1.4 1.25 20.2 832 4.61 570 0.7 1.4 1.25 20.1 803 3.08 850 0.7 1.5 1.25 21.8 985 1.83 1400 0.7 1.6 1.25 24.2 1241 1.15 2200 0.9 1.7 1.6 29.1 1930 0.727 3575 0.9 1.8 1.6 31.6 2328 0.524 5005 1.0 1.8 1.6 31.2 2629 0.387 7150 1.1 1.9 1.6 34.9 3394 0.268 10010 1.1 2.1 2.0 39.4 4617 0.193 13585 1.2 2</td> <td>thickness of insulation of insulation of insulation of cabes thickness of outer of outer sheath diameter of armour wires weight of cables conductor resistance at 20°C circuit current rating three photographs mm mm mm mm kg/km 0/km Amp Amp 0.7 1.4 1.25 20.2 832 4.61 570 42 0.7 1.4 1.25 20.1 803 3.08 850 53 0.7 1.5 1.25 21.8 985 1.83 1400 73 0.7 1.6 1.25 24.2 1241 1.15 2200 94 0.9 1.7 1.6 29.1 1930 0.727 3575 124 0.9 1.8 1.6 31.2 2629 0.387 7150 187 1.0 1.8 1.6 34.9 3394 0.268 10010 238 1.1 2.1 2.0 39.4 4617 0.193 13585 28</td> <td>thickness of insulation for outer sheath thickness of insulation of outer sheath diameter of armour sheath overall diameter of cables weight of cables conductor resistance at 20°C circuit current rating three phase A.C.* mm mm mm mm kg/km 0/km Amp Amp Amp Amp 0.7 1.4 1.25 20.2 832 4.61 570 42 44 0.7 1.4 1.25 20.1 803 3.08 850 53 56 0.7 1.5 1.25 21.8 985 1.83 1400 73 78 0.7 1.6 1.25 24.2 1241 1.15 2200 94 99 0.9 1.7 1.6 29.1 1930 0.727 3575 124 131 0.9 1.8 1.6 31.2 2629 0.387 7150 187 197 1.1 1.9 1.6 34.9 3394 0.268 10010</td>	thickness of insulation of insulation of linear of insulation of outer sheath diameter of armour wires overall diameter of cables weight of cables conductor resistance at 20°C circuit current rating mm mm mm kg/km Ω/km Amp 0.7 1.4 1.25 20.2 832 4.61 570 0.7 1.4 1.25 20.1 803 3.08 850 0.7 1.5 1.25 21.8 985 1.83 1400 0.7 1.6 1.25 24.2 1241 1.15 2200 0.9 1.7 1.6 29.1 1930 0.727 3575 0.9 1.8 1.6 31.6 2328 0.524 5005 1.0 1.8 1.6 31.2 2629 0.387 7150 1.1 1.9 1.6 34.9 3394 0.268 10010 1.1 2.1 2.0 39.4 4617 0.193 13585 1.2 2	thickness of insulation of insulation of insulation of cabes thickness of outer of outer sheath diameter of armour wires weight of cables conductor resistance at 20°C circuit current rating three photographs mm mm mm mm kg/km 0/km Amp Amp 0.7 1.4 1.25 20.2 832 4.61 570 42 0.7 1.4 1.25 20.1 803 3.08 850 53 0.7 1.5 1.25 21.8 985 1.83 1400 73 0.7 1.6 1.25 24.2 1241 1.15 2200 94 0.9 1.7 1.6 29.1 1930 0.727 3575 124 0.9 1.8 1.6 31.2 2629 0.387 7150 187 1.0 1.8 1.6 34.9 3394 0.268 10010 238 1.1 2.1 2.0 39.4 4617 0.193 13585 28	thickness of insulation for outer sheath thickness of insulation of outer sheath diameter of armour sheath overall diameter of cables weight of cables conductor resistance at 20°C circuit current rating three phase A.C.* mm mm mm mm kg/km 0/km Amp Amp Amp Amp 0.7 1.4 1.25 20.2 832 4.61 570 42 44 0.7 1.4 1.25 20.1 803 3.08 850 53 56 0.7 1.5 1.25 21.8 985 1.83 1400 73 78 0.7 1.6 1.25 24.2 1241 1.15 2200 94 99 0.9 1.7 1.6 29.1 1930 0.727 3575 124 131 0.9 1.8 1.6 31.2 2629 0.387 7150 187 197 1.1 1.9 1.6 34.9 3394 0.268 10010

Technical and Electrical Characteristics

Number and CSA of conductor	Nominal thickness of insulation	Nominal thickness of outer sheath	Nominal diameter of armour wires	Approx. overall diameter	Approx. net weight of cables	Maximum conductor resistance at 20°C	Short circuit current rating	Current rating three phase A.C.*		Voltage Drop Three
								Clipped direct	Free Air	─ phase A.C.*
n × mm²	mm	mm	mm	mm	kg/km	Ω/km	Amp	Amp	Amp	mV/A/m
4 × 4 RM	0.7	1.4	1.25	20.1	869	4.61	570	42	44	10.0
4 × 6 RM	0.7	1.5	1.25	21.2	906	3.08	850	53	56	6.8
4 × 10 RM	0.7	1.5	1.25	23.4	1140	1.83	1400	73	78	4.0
4 × 16 RM	0.7	1.6	1.25	26.1	1466	1.15	2200	94	99	2.5
4 × 25 RM	0.9	1.7	1.6	31.5	2261	0.727	3575	124	131	1.65
4 × 35 RM	0.9	1.8	1.6	34.2	2752	0.524	5005	154	162	1.15
4 × 50 SM	1.0	1.9	1.6	34.7	3271	0.387	7150	187	197	0.87
4 × 70 SM	1.1	2.1	2.0	40.3	4605	0.268	10010	238	251	0.60
4 × 95 SM	1.1	2.2	2.0	44.0	5789	0.193	13585	289	304	0.45
4 × 120 SM	1.2	2.3	2.5	49.3	7460	0.153	17160	335	353	0.37
4 × 150 SM	1.4	2.4	2.5	53.3	8785	0.124	21450	386	406	0.30
4 × 185 SM	1.6	2.6	2.5	58.0	10528	0.0991	26455	441	463	0.26
4 × 240 SM	1.7	2.7	2.5	63.8	13141	0.0754	34320	520	546	0.21
4 × 300 SM	1.8	2.9	2.5	68.8	15622	0.0601	42900	599	628	0.185
4 × 400 SM	2.0	3.2	3.15	79.1	20575	0.0470	57200	673	728	0.165
	_				_			_	_	

* acc to BS 7671 table 4E4A & 4E4B

Certificates issued by LPCB

Туре	Series 1	Series 2	Series 2e	Series 3	Series 4	Series 6
No	814c	814a 814f	814b 814g	1354b 1354d	814d 1354c	1354a

Applications Flame-X 950 cables

Low Smoke Zero Halogen Fire Resistant Flame-X 950 types can be used for applications where SAFETY of human is top priority, especially where sophisticated systems are provided, example:

- Mass Transit Systems,
- High rise buildings
- Confined locations (e.g underground metro stations)
- Schools & Hospitals
- Shopping Malls
- Other places with a large concentration of people

Installation and Storage recommendation:

Flame-X 950 Fire Resistant cables are very important for human life protection. That is why they need to be stored and installed with special care and attention.

We recommend:

- Cables shall be stored indoor and special care shall be taken when temperature rises above 45 deg C
- Cables shall not be exposed to direct sunlight for considerable period of time before installation.
- Preferably the installation shall be done during morning hours when the ambient temperature is low (applicable for Middle East conditions)
- Cables shall not be installed when ambient temperature is below 0 Deg. C
- During installation it is necessary to keep right bending radius. It cannot exceed value as per technical specification, at any point.
- Wire/Rope shall not be used directly on cable sheath for pulling
- Special attention is recommended when cable is pulled on cable tray.
- Rollers and bends shall not have any sharpness that can make damage,
- Flame-X 950 cables and wires shall be installed together with special compatible LSZH, fire performance equipment (joints, boxes) at installation site.

TELE-FONIKA Kable S.A. (DMCC Branch)
24F, Almas Tower
PO Box 393761
JLT Free Zone, Dubai, UAE.
T +971 4 4484300
F +971 4 4478856

TELE-FONIKA Kable S.A.

ul. Hipolita Cegielskiego 1 32-400 Myślenice, Poland T. +48 12 652 5000 F. +48 12 652 5156

info@tfkable.com

www.tfkable.com